PASCAL'S TRIANGLE IN 2-D PALINDROMIC SEQUENCES

TEIK-CHENG LIM

1. Motivation

Palindromes are words, phrases or numbers that spell the same backwards as forwards. For example, the phrase:

"Madam, I'm Adam"

is a palindrome. Existence of symmetry is, perhaps, the reason why palindromes are objects of beauty. Palindromes have been investigated over the years in terms of (a) obtaining palindromic numbers via arithmetical operation [1-5], (b) generating palindromic primes [6,7] and (c) the study of numerical palindromic properties [8-11]. In recent years the subject of palindromy has been investigated in the areas of computational mathematics for analyzing languages [12], biology for understanding cell replication [13] and chemical analysis of DNA [14]. In this note we shall see a special class of palindromes derived from palindromes. These palindromes can be expressed as a function, say, f(m), and upon substitution of positive integers $m = 1, 2, 3, \ldots$ into f(m) gives rise to a sequence of palindromes. Here, we consider a class of palindromes expressible as a function of two variables, say, f(m, n), whereupon substitution of $m, n = 1, 2, 3, \ldots$ gives a group of palindromes which, being 2-dimensional sequences, can be best appreciated in tabular forms. To make things more interesting, we narrow down our analysis to a special class of 2-dimensional palindromic sequences which exhibit Pascal's Triangle. The Pascal's Triangle, as shown in Figure 1, is useful for (a) extracting coefficients of binomial expansion, (b) obtaining the number of ways of choosing r objects from a number of n objects, and (c) obtaining Fibonacci's sequence, among various applications.

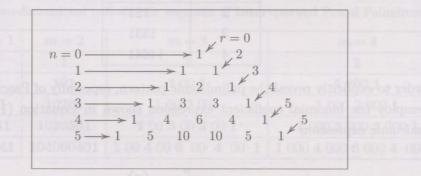


Figure 1. Pascal's Triangle up to n = 5

For each m, progression of a reflects for progression of Paral's the short and the first of the progression of Paral's Triangle are distributed by the term $\binom{n}{2}$ in Equation (4). Since elements of $\binom{n}{2}$ is the interval, the 2-dimensional palladromic sequence described by g(m, n) is hereby termed the interpreted Pascal Pascal Palladromy. $b_1 3, 3, 4, 5, 1, 0 = n$ of billy, after of field and busy to the palladromy in the parallel parallel

Mathematical Medley 71

The relevance of Pascal's Triangle is undoubted and its literature too numerous to be listed. Interested readers are referred to the following literature: [15-21]. Here, we intend to enjoy the Pascal Palindromy as a type of number pattern for aesthetical purposes [22]. Since the sequence

$$\binom{n}{r} = \frac{n!}{r!(n-r)!} \tag{1}$$

has a mirror image at r = (n/2) for n = even, and between two elements r = (n-1)/2and r = (n+1)/2 for n = odd, then the sequence described by Equation (1) for integer $r \in [0, n]$ is a palindromic sequence. As such, multiplying $\binom{n}{r}$ with 10^r or 10^{n-r} for nonnegative integer sequence of r up to n = 4 gives palindromic patterns because each consecutive element is placed at an order higher (for $\times 10^r$) or an order lower (for $\times 10^{n-r}$) than the previous element. Therefore this special class of palindromes, herein named "Pascal's Palindrome", is obtained by combining every element for each row in the Pascal's Triangle to form one integer, i.e. 1, 11, 121, 1331, 14641. A generalized expression is obtained by writing the Pascal's Palindromic function as 11^n for n = 0, 1, 2, 3, 4, as shown in Table 1.

able I. Pas	cal Palindrom	
n	11 ⁿ	
0	1	
1	11	
2	121	
3	1331	
4	14641	

In order to explicitly reveal the palindromic pattern, especially of Pascal's elements, we employ the binomial coefficient expression shown in Equation (1) to give the palindromic expression

$$11^n = \sum_{r=0}^n 10^r \binom{n}{r} \tag{2a}$$

which reads backwards from right to left, or

$$11^{n} = \sum_{r=0}^{n} 10^{n-r} \binom{n}{r}$$
(2b)

which reads forward from left to right, valid for n = 0, 1, 2, 3, 4.

72 Mathematical Medley

2. Interspersed Pascal Palindromy

Introducing a palindromic function of the form

$$f(m) = 11, 101, 1001, \ldots = 10^m + 1,$$

then taking positive integer powers for f(m) gives

$$g(m,n) = [f(m)]^n = (10^m + 1)^n,$$
(3)

Applying binomial theorem, Equation (3) can be written as

$$g(m,n) = \sum_{r=0}^{n} 10^{mr} \binom{n}{r}.$$
 (4a)

Equation (4a) is a palindrome as implied by Equation (1). By virtue of Equations (2a) and (2b), the backward representation in Equation (4a) can be read forward when written as

$$q(m,n) = \sum_{r=0}^{n} 10^{m(n-r)} \binom{n}{r}.$$
(4b)

The palindromic patterns in Equations (4a) and (4b) are valid for all positive integers m but limited for integer $n \in [0, 4]$. This may well be seen from Figure 1 where for rows $n \ge 5$, there exists double digits in some elements, thereby upsetting the palindromic pattern. The 2-dimensional palindromic sequence described by g(m, n) is displayed in Table 2 up to m = n = 4, whereby elements from Pascal's Triangle are bolded for clarity.

	m = 1	m=2	m = 3	m = 4	
n = 0	011	1	1 and (10) 1 and (10)	for sub-palinf romes to extra	
n = 1	11	101	1 00 1	1 000 1	
n = 2	121	10201	1 00 2 001	1 000 2 000 1	
n = 3	1331	1030301	1 00 3 00 3 00 1	1 000 3 000 3 000 1	
n = 4	14641	104060401	1 00 4 00 6 00 4 00 1	$1\ 000\ 4\ 000\ 6\ 000\ 4\ 000\ 1$	

Table 2. Two-dimensional palindromic sequence of Interspersed Pascal Palindrome

We note that for each n, there exist (m-1) zeros present between the Pascal Triangle's elements since the terms in Equation (4) increment in the order of m. For each m, progression of n reflects the progression of Pascal's Triangle by the horizontal rows as implied by the term $\binom{n}{r}$ in Equation (4). Since elements of Pascal's Triangle are distributed with uniformly spaced interval, the 2-dimensional palindromic sequence described by g(m, n) is hereby termed the Interspersed Pascal Palindromy.

3. Twin Pascal Palindromy

Consider now the function

$$h(m,n) = 11^{n} f(m) = (10^{m} + 1) \sum_{r=0}^{n} 10^{n} \binom{n}{r}$$
(5)

which is a product of two palindromic terms. The RHS of Equation (5) can be split into two terms,

$$h(m,n) = \sum_{r=0}^{n} 10^{r} \binom{n}{r} + 10^{m} \sum_{r=0}^{n} 10^{r} \binom{n}{r}, \qquad (6a)$$

whereby each term on the RHS displays Pascal's Palindromy, reading backwards. For forward reading, Equation (6a) can be written in its equivalence form

$$h(m,n) = 10^m \sum_{r=0}^n 10^{n-r} \binom{n}{r} + \sum_{r=0}^n 10^{n-r} \binom{n}{r}.$$
 (6b)

Results of h(m, n) is shown in Table 3 wherein each of the Twin Pascal Palindromes is underlined.

ting the	m = 1	m=2	m = 3	m=4	m = 5	m = 6
n = 0	11	<u>101</u>	<u>1001</u>	<u>10001</u>	<u>1</u> 0000 <u>1</u>	<u>1</u> 00000 <u>1</u>
n = 1	121	<u>1111</u>	<u>11011</u>	<u>11</u> 00 <u>11</u>	<u>1100011</u>	<u>11</u> 0000 <u>11</u>
n = 2	1331	12221	$\underline{121121}$	<u>121</u> 0 <u>121</u>	<u>121</u> 00 <u>121</u>	<u>121</u> 000 <u>121</u>
n = 3	14641	134431	1332331	$\underline{13311331}$	<u>1331</u> 0 <u>1331</u>	<u>1331</u> 00 <u>1331</u>
n = 4	1000 <u>-</u> 1000	1478741	14655641	146424641	14641 14641	14641 0 14641

Table 3. Two-dimensional palindromic sequence of Twin Pascal Palindromes

For sub-palindromes to exist in Equation (6b), the last term of $10^m \sum_{r=0}^n 10^{n-r} \binom{n}{r}$, being lowest in value, must be at least one order higher than the first term of $\sum_{r=0}^n 10^{n-r} \binom{n}{r}$, being the highest in value. That is, $m \ge (n+1)$ as evident from Table 3. We further note that

- (a) palindromic pattern is observed for all m, but
- (b) this palindromic pattern is limited to n = 3 (for m = 1) and n = 4 (for m > 1), and that
- (c) twin palindromes (shown underlined in Table 3) is observed for $m \ge (n+1)$.

Where $m \leq n$, palindromic pattern persist, albeit without the twin palindromes. To better appreciate the beauty of twin palindromy, let us look again at the phrase, "Madam, I'm Adam." Removing all punctuation marks and writing in uppercase, we have

<u>MADAM</u>I<u>MADAM</u>.

As shown by the underlinings, this palindromic phrase consists of two sub-palindromes, each of which is spelt

MADAM.

Since these sub-palindromes exist as an identical pair, we call this palindromic phenomenon as Twin Palindromy.

4. Conclusion and Further Motivation

A special class of palindromes which are derived from other palindromes, which display 2-dimensional palindromic sequences, and which exhibits elements from Pascal's Triangle, has been demonstrated in this note. Two sets of such palindromes have been looked into:

- (a) where Pascal Triangle's elements are interspersed amongst zeroes, and
- (b) where Pascal Triangle's elements occur as twins, distinctly separated by zeroes.

The twin palindrome illustrated herein can, in fact, be classified under the category of a two-ordered palindrome whereby the entire palindrome itself is of the first order and the sub-palindrome is the second order. As an example, the palindromic phrase depicted in Figure 2 reveals two sub-palindromes which, in turn, consist of four sub-sub-palindromes.

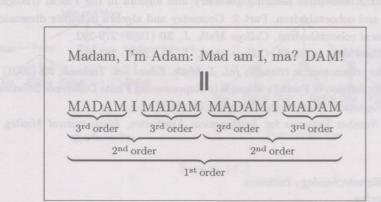


Figure 2. Alphabetical example of palindrome in 3 orders

Hence we may call this a three-ordered palindrome. As such, obtaining numerical palindromes of three or more orders, consisting significant numbers (such as Pascal Triangle's elements, plateau primes, palindromic primes, etc) as sub-palindromes, is recommended for future analysis and appreciation.

References

- [1] C. W. Trigg, Palindromic cubes, Math. Mag., 34(1961) 214.
- [2] C. W. Trigg, Palindromes by addition, Math. Mag., 40 (1967) 26-28.
- [3] B. A. Brousseau, Palindromes by addition in base two, Math. Mag., 42 (1969) 254-256.
- [4] C. W. Trigg, More palindromes by reversal addition, Math. Mag., 45 (1972) 184-186.
- [5] M. T. Rebmann and F. Sentyrz Jr., A note on palindromes by reversal addition, *Math. Mag.*, 45 (1972) 186-187.
- [6] H. Gabai and D. Coogan, On palindromes and palindromic primes, Math. Mag., 42 (1969) 252-254.
- [7] J. L. Boal and J. H. Bevis, Permutable primes, Math. Mag., 55 (1982) 38-41.
- [8] R. T. Hansen, Modular palindromes, Math. Mag., 44 (1971) 208-212.
- [9] H. Harborth, On palindromes, Math. Mag., 46 (1973) 96-99.
- [10] H. Schmidt Jr., Palindromes: density and divisibility, Math. Mag., 61 (1988) 297-300.
- [11] R. A. Mollin and K. Cheng, Palindromy and ambiguous ideals revisited, J. Number Theory, 74 (1999) 98-110.
- [12] S. S. Yu, Palindrome words and reverse closed languages, Int. J. Computer. Math., 75 (2000) 389-402.
- [13] F. Nasar, C. Jankowski and D. K. Nag, Long palindromic sequences induce double-strand breaks during meiosis in yeast, *Molecular and Cell Biology*, **20** (2000) 3449-3458.
- [14] E. L. Palmer, A. Gewiess, J.M. Harp, M.H. York and G.J. Bunick, Large scale production of palindrome DNA fragments, *Analytical Chem.*, 231 (1995) 109-114.
- [15] P. Hilton and J. Pederson, Looking into Pascal's Triangles, Math. Mag., 60 (1987) 305-316.
- [16] R. C. Bollinger, Extended Pascal's Triangles, Math. Mag., 66 (1993) 87-94.
- [17] P. Hilton and J. Pederson, Relating geometry and algebra in the Pascal triangle, hexagon, tetrahedron and coboctahedron. Part 1: Binomial coefficients, extended binomial coefficients and preparation for further work, *College Math. J.*, **30** (1999) 170-186.
- [18] P. Hilton and J. Pederson, Relating geometry and algebra in the Pascal triangle, hexagon, tetrahedron and coboctahedron. Part 2: Geometry and algebra in higher dimensions: identifying the Pascal coboctahedron, *College Math. J.*, **30** (1999) 279-292.
- [19] H. Walser, The Pascal pyramid, College Math. J., 31 (2000) 383-392.
- [20] Y. Nahir, The trigonometric triangle, Int. J. Math. Educ. Sci. Technol., 32 (2001) 614-624.
- [21] T. C. Lim, Application of Pascal's Triangle in Representing Finite Difference Solution to Partial Differential Equation, *Mathematical Medley*, **31** (2004) 2-8.
- [22] T. C. Lim, Number Patterns for Arithmetical Aesthetics, Mathematical Medley, 30 (2003) 125-133.

Nanoscience and Nanotechnology Initiative Faculty of Engineering National University of Singapore 9 Engineering Drive 1, Singapore 117576